BG/Q Performance Tools

Scott Parker
BG/Q Early Science Workshop: April 30, 2012

Argonne Leadership Computing Facility




BG/Q Performance Tool Development

*" |n conjunction with the Early Science program an Early Software efforts
was initiated to bring widely used performance tools, debuggers, and
libraries to the BG/Q

= Motivation was to take lesson learned from P and applied to Q:
— Tools and libraries were not in the shape we wanted in the early days of P
— Development best done as a collaboration between vendor, developers, and users
— Work with the vendor (IBM) as early as possible in the process:
e vendor doesn’t always have a clear idea of tools/user requirements
e vendor expertise will dissipate after development phase ends
— Don’t rely solely on vendor tools
— A number of useful and popular open source HPC tools exist
— Engage the tools community early for requirements and porting
— Insure functionality of vendor base software layer supporting tools:

e hardware performance counter API, stack unwinding, handling interrupts and
traps, debugging and symbol table information, debugger process control, compiler
instrumentation

Argonne Leadership Computing Facility

° 2



BG/Q Tools Development Status

BGPM

gprof
TAU

Rice HPCToolkit
IBM HPCT

mpiP

PAPI

Darshan
Open|Speedshop
Scalasca

Dynlnst

ValGrind

Jumpshot

Argonne Leadership Computing Facility

IBM
GNU/IBM

Unv. Oregon
Rice Unv.

IBM
LLNL

UTK

ANL

Krell

Juelich
UMD/Wisc/IBM
ValGrind/IBM

ANL

HPC

Timing (sample)

Timing (inst, sample), MPI, HPC

Timing (sample), HPC (sample)

MPI, HPC
MPI

HPC API

10

Timing (sample), HCP, MPI, IO

Timing (inst), MPI

Binary rewriter

Memory & Thread Error Check

MPI

Available
Available

Available
Available

In development. Beta Avail

Available

Available

Available

In development. Beta Avail
Available

In development
Development pending

Available



Aspects of providing tools on BG/Q

* The Good - BG/Q provides a hardware & software environment that enables many standard
performance tools to be provided:
— Software:
e Environment similar to 64 bit PowerPC Linux: Provides standard GNU binutils
e New, much-improved performance counter APl bgpm
— Improved Performance Counter Hardware:

e BG/Q provides 424 64-bit counters in a central node counting unit for all hardware units: processor cores,
prefetchers, L2 cache, memory, network, message unit, PCle, DevBus, and CNK events

e Countable events include: instruction counts, flop counts, cache events, and many more
e Provides support for hardware threads and counters can be controlled at the thread level
= The Bad — some aspects of the hardware/software environment are unique to BG/Q

— 0O/S ‘Linux like’ but not really Linux:

e doesn’t support all Linux system calls/features: doesn’t have fork(), /proc, shell
— static linking by default
— non-standard instruction set (addition of quad floating point SIMD inst.)

— hardware performance counter setup is unique to BG/Q
— to get tools working early in BG/Q lifecycle required working in pre-production environment

Argonne Leadership Computing Facility

° 4



v

Tools and API’s Available on Cetus

BGPM
PAPI

gprof

TAU

Rice HPCToolkit
Scalasca
OpenSpeedShop
IBM HPCT

mpiP

Darshan

Jumpshot

Argonne Leadership Computing Facility

IBM
UTK
GNU/IBM

Unv. Oregon

Rice Unv.
Juelich
Krell

IBM

LLNL

ANL

ANL

HW Counter API
HW Counter API
Timing (sample)

Timing (inst, sample), MPIl, HW Counters (inst)

Timing (sample), HW Counters (sample)
Timing (inst), MPI

Timing (sample), HCP, MPI, 10

MPI, HW Counters

MPI

10

MPI



What to expect from performance tools

= Performance tools collect information during the execution of
a program to enable the performance of an application to be
understood, documented, and improved

= Different tools collect different information and collect it in
different ways

" |tisup tothe user to determine:

— what tool to use

— what information to collect

— how to interpret the collected information

— how to change code to improve the performance

Argonne Leadership Computing Facility

° 6



Types of Performance Information

= Types of information collected by performance tools:
— Time in routines and code sections
— Call counts for routines
— Call graph information with timing attribution

— Information about arguments passed to routines:
e MPI— message size
e |O — bytes written or read
— Hardware performance counter data:
e FLOPS
e Instruction counts (total, integer, floating point, load/store, branch, ...)
e Cache hits/misses
e Memory, bytes loaded and stored
e Pipeline stall cycle

— Memory usage

Argonne Leadership Computing Facility

° 7



Sources of Performance Information

= Code Instrumentation:
— Insert calls to performance collection routines into the code to be
analyzed
— Allows a wide variety of data to be collected

— Source instrumentation can only be used on routines that can be
edited and compiled, may not be able to instrument libraries

— Can be done: manually, by the compiler, or automatically by a parser,
or after compilation by a binary instrumenter

Argonne Leadership Computing Facility

v



Sources of Performance Information

= Execution Sampling:
— Requires virtually no changes made to program
— Execution of the program is halted periodically by an interrupt source

(usually a timer) and location of the program counter is recorded and
optionally call stack is unwound

— Allows attribution of time (or other interrupt source) to routines and
lines of code based on the number of time the program counter at
interrupt observed in routine or at line

— Estimation of time attribution is not exact but with enough samples
error is negligible

— Require debugging information in executable to attribute below
routine level

— Performance data can be collected for entire program including
libraries

Argonne Leadership Computing Facility

° 9



Sources of Performance Information

= Library interposition:

— A call made to a function is intercepted by a wrapping performance
tool routine

— Allows information about the intercepted call to captured and
recorded, including: timing, call counts, and argument information

— Can be done for any routine by one of several methods:

e Some libraries (like MPI) are designed to allow calls to be intercepted. This

is done using weak symbols (MPI_Send) and alternate routine names
(PMPI_Send)

e LD PRELOAD — can force shared libraries to be loaded from alternate
locations containing interposing routines, which then call actual routine

e Linker Wrapping — instruct the linker to resolve all calls to a routine (ex:
malloc) to an alternate wrapping routine (ex: malloc_wrap) which can
then call the original routine

Argonne Leadership Computing Facility

° 10



Sources of Performance Information

= Hardware Performance Counters:
— Hardware register implemented on the chip that record counts of
performance related events. For example:
e FLOPS - Floating point operations
e L1 cache miss — number of L1 requests that miss

— Processors support a limited set of counters and countable events are
preset by chip designer

— Counters capabilities and events differ significantly between
processors

— Need to use an API to configure, start, stop, and read counters

— Blue Gene/Q:

e Has 424 performance counter registers for: core, L1, prefetcher, L2 cache,
memory, network, message unit, PCle, DevBus, and CNK events

Argonne Leadership Computing Facility
11



v

Tools and API’s Available on Cetus

BGPM
PAPI

gprof

TAU

Rice HPCToolkit
Scalasca
OpenSpeedShop
IBM HPCT

mpiP

Darshan

Jumpshot

Argonne Leadership Computing Facility

IBM
UTK
GNU/IBM

Unv. Oregon

Rice Unv.
Juelich
Krell

IBM

LLNL

ANL

ANL

HW Counter API
HW Counter API
Timing (sample)

Timing (inst, sample), MPIl, HW Counters (inst)

Timing (sample), HW Counters (sample)
Timing (inst), MPI

Timing (sample), HCP, MPI, 10

MPI, HW Counters

MPI

10

MPI

12



BGPM API

= Hardware performance counters collect counts of operations
and events at the hardware level

= BGPM is the C programming interface to the hardware
performance counters

= Counter Hardware:

— Centralized set of registers collecting counts from distributed units
e Sixteen A2 CPU cores, L1P and Wakeup units
e Sixteen L2 units (memory slices)
e Message Unit
e PCle Unit
e Devbus
— Separate counter units for:
e Memory Controller
e Network

Argonne Leadership Computing Facility

° 13



BGPM Hardware Counters

's N 's N
[ Ctire ] | LlP | I | Memory fonroller |
Core
p | N
2 =
UPC_{PL2}  UPC_{MU.PE.DB} o
UpPC_P Daisy Chain Daisy Chain
~ Out Out \ )
LiP - ~
Cora 1 [ Netlvork |
Local Coun
UPC P —é 2960 % 288N
L J UPC_ND
oo UPC_P ) ’
) . UPC_L2
LiP
Care 16
@
UPC_P g .
- 2 [ MU ]
UPC_C I
L2 Slice UPC_MU
L2 Sice 0 64D x 288 W - o
(o Counters } SRAM
s )
R ) "
PCle
([Cose 1 | DevBus & ]
L2 Slice 1 - /
Local Countars @7
UPC_L2 p N
\ J
. o 0
—
( - b Y!‘_'? UPC_Devbus
UPC_{PL2)  UPC_{MUPE DB} . y
L2 Slice 15 Daisy Chain Daisy Chain
n o
UPC_L2 ~ 7y 'Y =%
- v
Q,Q) z %Q) z

Argonne Leadership Computing Facility

¥ 14



BGPM Hardware Counters

MMIO

A2 Processor Core N
24 14-bit
W FU_Events(0:7) (Two per thread) e focal
T1_Events(0:7) : counters

T2 Events(0:7)
T3 _Events(0 :’7)

XY_Events(0:7 6 groups

XU Event Selection
TO_Events(0:31)

T1 Events(0:31) 9]
T2_Events(0:31)

T3_Events(0:31)
IU Event Selection

-_J ’
TO_Events(0:31) %

T1 Events(0:31) IU_Events(0:7)

A 4

A 4 A 4

E

A4
A 4

4 4] I

T2 Events(0:31) >
T3 Events(0:31) g:g e
LSU Event Selection
TO_Events(0:31) "_’ decode
T1_Events(0:31) > ]
T2_Events(0:31) UPC_P Unit

T3 Events(0:31) e ants(0:7

-—'T L1P/Wakeup Units

-qg) —————————p
Wakeup(0:7) —————p

MMU Event Selection
TO_Events(0:15)
T1 _Events(0:15)
T2_Events(0:15)
T3_Events(0:15)

MMU_Events(0:7)

Switch(0:34)
Stream(0:34]
480 total events usxos?) : =

MVIO |

E

> ~162 events

;

Argonne Leadership Computing Facility

° 15



BGPM API

= Example BGPM calls:

Bgpm_Init (BGPM_MODE_SWDISTRIB);
int hEvtSet = Bgpm CreateEventSet();

unsigned evtList[] = { PEVT IU ISl STALL CYC, PEVT IU IS2 STALL_CYC,
PEVT CYCLES, PEVT INST ALL, };

Bgpm_AddEventList (hEvtSet, evtList, sizeof(evtList)/sizeof(unsigned) );
Bgpm_Apply(hEvtSet)

Bgpm_Start (hEvtSet);

Workload();

Bgpm Stop(hEvtSet)

Bgpm_ReadEvent (hEvtSet, i, &cnt);

printf(" 0x%0161x <= %s\n", cnt, Bgpm GetEventLabel (hEvtSet, i));

= |nstalled in: /bgsys/drivers/ppcfloor/bgpm/

"= Documentation:

— wiki.alcf.anl.gov/bgqg-earlyaccess/index.php/Bgpm
— /bgsys/drivers/ppcfloor/bgpm/docs

Argonne Leadership Computing Facility

° 16



Punit Events

BGPM Events

Eventid Label Description Scope | Features | Tag I PAPI Detail
Undefined
0 PEVT_UNDEF undefined thread 3 Undefined event
should not occ...
AXU Execution Unit Events (Quad Floating Point Unit)
1 PEVT_AXU_INSTR_COMMIT AXU Instruction thread olmc s A valid AXU .
Committed (non-load/store) i...
AXU CR :
2 PEVT_AXU_CR_COMMIT Instruction thread olme s A valid AXU CR
R updater instruc...
Committed
3 | PEVT_AXU_IDLE AXU Idle thread olme s | PAPIFXU_IDL No valid AXU
instruction is in...
AXU FP Divide or : )
R A Floating-Point
4 PEVT_AXU_FP_DS_ACTIVE Square root in thread olmc be Divide or Squ...
progress
AXU FP Divide or
5 PEVT_AXU_FP_DS_ACTIVE_CYC Square root in thread olmc bc :‘;{2:;;“ Cycles for
progress cycles
6 PEVT_AXU_DENORM_FLUSH AXU Denormal thread olmc s A B operand of a
Operand flush Floating Poin...
AXU uCode )
7 | PEVT_AXU_UCODE_OPS_COMMIT Operations thread olmc s A valid AXU ucode
R operation is...
Committed
8 PEVT_AXU_FP_EXCEPT AXU Floating thread olme e FP Exception - FX bit
Point Exception of the F...
AXU Floating )
9 | PEVT_AXU_FP_ENAB_EXCEPT Point Enabled thread olme e fPFg‘(a:i'ted Exception
Exception

Argonne Leadership Computing Facility

17



PAPI

= The Performance API (PAPI) specifies a standard API for

accessing hardware performance counters available on most
modern microprocessors

PAPI provides two interfaces to counter hardware:
— simple high level interface

— more complex low level interface providing more functionality

Defines two classes of hardware events (run papi_avail):

e PAPI Preset Events — Standard predefined set of events that are typically

found on many CPU’s. Derived from one or more native events.
(ex: PAP_FP_OPS — count of floating point operations)

e Native Events — Allows access to all platform hardware counters (ex:
PEVT _XU_COMMIT — count of all instructions issued)

= |nstalled in /soft/perftools/papi

Documentation: wiki.alcf.anl.gov/bgg-earlyaccess/index.php/Papi

Argonne Leadership Computing Facility

18




gprof

= Widely available Unix tool for collecting timing and call graph
information via sampling

m Collects information on:
— Approximate time spent in each routine
— Count of the number times a routine was invoked

— Call graph information:
e |ist of the parent routines that invoke a given routine
e |ist of the child routines a given routine invokes
e estimate of the cumulative time spent in the child routines

= Advantages: widely available, easy to use, robust

= Disadvantages: scalability, opens one file per rank, doesn’t
work with threads

Argonne Leadership Computing Facility

° 19



v

gprof

Using gprof:

— Compile all and link all routines with the ‘-pg’ flag
mpixlc -pg -g -02 test.c ...
mpix1f90 -pg -g -02 test.f90 ..

— Run the code as usual: will generate one gmon.out for each rank
(carefull)

— View data in gmon.out files, by running:
gprof <executable-file> gmon.out.<id>
e flags:
e -p:display flat profile
e -q:display call graph information
e -|:displays instruction profile at source line level instead of function level

e -C:display routine names and the execution counts obtained by
invocation profiling

Argonne Leadership Computing Facility

20




TAU

= The TAU (Tuning and Analysis Utilities) Performance System is
a portable profiling and tracing toolkit for performance
analysis of parallel programs

= TAU gathers performance information while a program
executes through instrumentation of functions, methods,
basic blocks, and statements via:

— automatic instrumentation of the code at the source level using the
Program Database Toolkit (PDT)

— automatic instrumentation of the code using the compiler
— manual instrumentation using the instrumentation API

— at runtime using library call interception

— runtime sampling

Argonne Leadership Computing Facility

° 21




v

= Some of the types of information that TAU can collect:

TAU

— time spent in each routine

— the number of times a routine was invoked

— counts from hardware performance counters via PAPI
— MPI profile information

— Pthread, OpenMP information
— memory usage

Installed in /soft/perftools/tau

Documentation: wiki.alcf.anl.gov/bgg-earlyaccess/index.php/Tau

Argonne Leadership Computing Facility

22




Rice HPCToolkit

= A performance toolkit that utilizes statistical sampling for
measurement and analysis of program performance

= Assembles performance measurements into a call path profile

that associates the costs of each function call with its full
calling context

= Samples timers and hardware performance counters

— Time bases profiling is supported on the Blue Gene/Q
®" Traces can be generated from a time history of samples

= Viewer provides multiple views of performance data
including: top-down, bottom-up, and flat views

= |nstalled in /soft/perftools/hpctoolkit
" Documentation: wiki.alcf.anl.gov/bgg-earlyaccess/index.php/Hpctoolkit

Argonne Leadership Computing Facility

° 23



Scalasca

= Designed for scalable performance analysis of large scale
parallel applications

" |nstruments code and can collects and provides summary and
trace information

= Provides automatic even trace analysis for inefficient
communication patterns and wait states

= Graphical viewer for reviewing collected data
= Support for MPIl, OpenMP, and hybrid MPI-OpenMP codes
= |nstalled in /soft/perftools/scalasca

" Documentation: wiki.alcf.anl.gov/bgg-earlyaccess/index.php/Scalasca

Argonne Leadership Computing Facility

¥ 24



IBM HPCT

= A package from IBM that includes several performance tools:
— MPI Profile and Trace library
— Hardware Performance Monitor (HPM) API

= Consists of three libraries:
— libmpitrace.a — provides information on MPI calls and performance
— libmpihpm.a — provides MPI and hardware counter data

— libmpihpm_smp.a — provides MPIl and hardware counter data for
threaded code

= |nstalled in: /soft/perftools/hpctw/
» Documentation: wiki.alcf.anl.gov/bgg-earlyaccess/index.php/Hpct

Argonne Leadership Computing Facility

° 25



IBM HPCT - MPI Trace

= MPI Profiling and Tracing library

— Collects profile and trace information about the use of MPI routines
during a programs execution via library interposition
— Profile information collected:
e Number of times an MPI routine was called
e Time spent in each MPI routine
e Message size histogram

— Tracing can be enabled and provides a detailed time history of MPI
events

— Point-to-Point communication pattern information can be collected in
the form of a communication matrix

— By default MPI data is collected for the entire run of the application.
Can isolate data collection using API calls:
e summary_start()
e summary_stop()

Argonne Leadership Computing Facility
26



IBM HPCT - MPI Trace

= Using the MPI Profiling and Tracing library
— Recompile the code to include the profiling and tracing library:

mpixlc -o test-c test.c -g -L/soft/perftools/hpctw-1lmpitrace
mpix1lf90 -o test-f90 test.f90 -g -L/soft/perftools/hpctw -lmpitrace

— Run the code as usual, optionally can control behavior using
environment variables.
e SAVE_ALL_TASKS={yes,no}
TRACE_ALL EVENTS={yes,no}
PROFILE_BY_CALL_SITE={yes,no}
TRACEBACK _LEVEL={1,2..}
TRACE_SEND_PATTERN={yes,no}

Argonne Leadership Computing Facility
27

v



IBM HPCT - MPI Trace

= MPI Trace output:
— Produces files name mpi_profile.<rank>

— Default output is MPI information for 4 ranks — rank 0, rank with max
MPI time, rank with MIN MPI time, rank with MEAN MPI time. Can get
output from all ranks by setting environment variables.

pData for MPI rank 0 of 1024 ) o
Times and statistics from MPI_Init() to MPI_Finalize().

MPI Routine #calls avg. bytes time(sec)
MPL_Comm..5iz 3 0.0 0.000
MPL can 5 0.0 0.000
SR S R
MEL Lrecy . .

=R, 3 szlzg'g %'3881
ﬂgﬁgﬁ{’er 3 0.0 0.000
MPI_Reduce 4 3925.0 0.001
MPL.Allreduce 5 15.2 0.000

MPI task 0 of 1024 had the maximum communication time.
total communication time = 1.677 seconds.
total elapsed time = 38.647 seconds.
heap memory used = 38.844 mbytes.

Argonne Leadership Computing Facility

° 28



IBM HPCT - HPM

= Hardware Performance Monitor (HPM) is an IBM library and
API for accessing hardware performance counters

— Configures, controls, and reads hardware performance counters

= (Can select the counter used by setting the environment
variable:
— HPM_GROUP=0,1,2,3 ...
= By default hardware performance data is collected for the
entire run of the application

= APl provides calls to isolate data collection.

void HPM Start(char *label) - start counting in a block marked by label
void HPM Stop(char *label) - stop counting in a block marked by label

Argonne Leadership Computing Facility

° 29



IBM HPCT - HPM

= To Use:
— Link with HPM library:

mpixlc -o test-c test.c -L/soft/perftools/hpctw -1Impihpm -L/bgsys/
drivers/ppcfloor/bgpm/1ib -1lbgpm -L/bgsys/drivers/ppcfloor/spi/
lib -1SPI upci_cnk

mpix1f90 -o test-f test.f90 -L/soft/perftools/hpctw -1lmpihpm -L/
bgsys/drivers/ppcfloor/bgpm/1lib -1bgpm -L/bgsys/drivers/
ppcfloor/spi/lib -1SPI upci_cnk

— Run the code as usual, setting environments variables as needed

Argonne Leadership Computing Facility

° 30



IBM HPCT - HPM

= HPM output:

— files output at program termination are:

e hpm_summary.<rank>— hpm files containing counter data, summed over
node

Hardware counter report for BGQ - sum for node <0,0,0,0,0>.
cores in use = 16, active threads per core = 4.

mRiAJl, call count = 1, cycles = 61829628876, max cycles = 61835872069 :
-~ Counter values s over processes on this node ----
16279923298 Committed Load Misses
146867542314 Committed Cacheable Loads
15953740380 Ll? miss
476269353705 Al] XU Instruction Completions
224066635616 A11 AXU Instruction Completions
444560789965  FP Operations Group 1
-~ L2 counters (shared for the node) ------ceecmmcaaan
100 61653146465 L2 Hits

ocooooo

100 383554 L2 Misses
100 190738 L2 lines loaded from main memory
100 368363 L2 lines stored to main memory

Derived metrics for code block "mpia)l" averaged over process(gs) on node <0,0,0,0,0>:
Instruction mix: FPU = 31.99 %, FXU = 68.01 %
Instructions per cycle completed per core = g 7079

Per cent of max issue rate per core = 48.1
Total weighted GFlops for this node = 11.503
Loads that hit in L1 d-cache = 88.92 %
L1P buffer = 0.22 %
L2 cache = 10.86 %
DDR = 0.00%
DDR traffic for the node: 1d = 0.000, st = 0.001, total = 0.001 (Bytes/cycle)

Argonne Leadership Computing Facility

° 31



mpiP

= mpiP is a lightweight profiling library for MPI applications
= mpiP provides MPI information broken down by program call
site:
— the time spent in various MPI routines
— the number of time an MPI routine was called

— information on message sizes

= |nstalled in: /soft/perftools/mpiP
= Documentation at: wiki.alcf.anl.gov/bgg-earlyaccess/index.php/MpiP

Argonne Leadership Computing Facility

° 32



= Using mpiP:

— Recompile the code to include the mpiP library

mpixlc -o test-c test.c -L/soft/perftools/mpiP/1ib/ -1mpiP -L /bgsys/drivers/
ppcfloor/gnu-1linux/powerpc64-unknown-1linux-gnu/powerpc64-bgg-1linux/ -1bfd -

liberty

mpix1f90 -o test-f90 test.f90 -L/soft/perftools/mpiP/1ib/ -1mpiP -L/bgsys/
drivers/ppcfloor/gnu-linux/powerpc64-unknown-linux-gnu/powerpc64-bgqg-linux/ -
1bfd -1liberty

— Run the code as usual, optionally can control behavior using
environment variable MPIP

— Outputis a single .mpiP summary file containing MPI information for
all ranks

Argonne Leadership Computing Facility
33

v



v

Darshan

Darshan is a library that collects information on a programs IO
operations and performance

Unlike BG/P Darshan is not enabled by default yet
To use Darshan add the appropriate softenv keys:

— +darshan-xl

— +darshan-gcc

— +darshan-xl.ndebug

Upon successful job completion Darshan data is written to a

file named
<USERNAME> <BINARY NAME> <COBALT JOB_ID> <DATE>.darshan.gz

in the directory:
— /veas-fsO/logs/darshan/<year>/<month>/<day>

Argonne Leadership Computing Facility

34




Jumpshot

Jumpshot is an interactive tool for visualizing parallel program behavior

It can be used to acquire understanding of what a program is doing and

why

It can be used as one of multiple ways to process TAU data

Events can be inspected at multiple scales

4 Zoom Level clow Min Time Vlew Tni n Time
P 10 |0.0886675119

TimeLine : 120, np 5_Iref=6, myn slogz <Identity Map

Zoom Focu sTIme Vlew Final Time.
123159529034 123284629439

clow MaxTIme Tlme Per. Pixel

12.3034428544 25.1087589264 | 0.0000352395

s 12305

] ] T ] ] T
123075 1231 123125 12315 123175 1232 123225 12325

Time tseconds)

1232

I
[Ftaiko
N
[ Kl »

TimeLine : 120, np-ﬂ Iref=6_myri. s«)gz <Identity Map> I I
Jum-u-\»\n\ <]>]e aj[n] (@88 28 \
Lowest I Max Dept ( Zoom Level Global Min Time View Init Time Zoom Focus Time  View Final Time Global Max Time  Time Per Pixel
[ P o [o.088e675119 0.0886675119 12.3159529034 25.1087589264 0.0352395654 m
Idenlity Map TimeLines - | 5.0 =]
=l I B Co
Co ? ”$ v
v h NS LA
IV .- AN S AL LY \\‘ - D 1
¥ LR -
[NES LA \ i A
N o
02 -5
Dz
LA A g
o /Al\"‘ 4! y N A 5
A V/.ﬁl\ﬁl '/0: (VA Ds
)
04 4 DOs
Ds 1 Ds
Ds B
[ 25X o ‘I—WZ
. — . . < v
SN SN @LneD  |=
o 0 s — —
= — ! < »\
< » - < »
olned [a 14l uration (max) = 2.5411 sec Al L
1 {lto1: time (min) = 2.3852754831, LinelD = 7 i ] 7 i ol
— || 2s[fl 11 time (max) = 4:9263705015, LinelD = 6 15.00 1750 2000 2250 2|
< Ol duration (ave) = 1.10051 msec Time Geconds) - Gl @R W]

0]: time (ave) = 3.6481806572, LinelD = 7
[1]: time (ave) = 3.6492811626, LinelD = 6

[Number of Real Drawables = 1782 ~




Steps in looking at performance

= Time based profile with at least one of the following:
— Rice HPCToolkit
— TAU
— Scalasca
— gprof

= MPI profile with:
— Scalasca
— Tau
— HPCTW MPI Profiling Library
— mpiP
— Jumpshot
= Gather performance counter information for critical routines:
— PAPI
— HPCTW

Argonne Leadership Computing Facility

° 36



